Average lower independence number in splitting graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Average Lower Independence Number of Total Graphs

In communication networks, ”vulnerability” indicates the resistance of a network to disruptions in communication after a breakdown of some processors or communication links. We may use graphs to model networks, as graph theoretical parameters can be used to describe the stability and reliability of communication networks If we think of a graph as modeling a network, the average lower independen...

متن کامل

On the Average Lower Independence Number of Some Graphs

In a communication network, several vulnerability measures are used to determine the resistance of the network to disruption of operation after the failure of certain stations or communication links. If the communication network is modeled as a simple, undirected, connected and unweighted graph G, then average lower independence number of a graph G can be considered as a measure of graph vulner...

متن کامل

On average lower independence and domination numbers in graphs

Theaverage lower independencenumber iav(G)of a graphG=(V ,E) is defined as 1 |V | ∑ v∈V iv(G), and the average lower domination number av(G) is defined as 1 |V | ∑ v∈V v(G), where iv(G) (resp. v(G)) is the minimum cardinality of a maximal independent set (resp. dominating set) that contains v.We give an upper bound of iav(G) and av(G) for arbitrary graphs. Then we characterize the graphs achiev...

متن کامل

Average Distance and Independence Number

A sharp upper bound on the average distance of a graph depending on the order and the independence number is given. As a corollary we obtain the maximum average distance of a graph with given order and matching number. All extremal graphs are determined.

متن کامل

A new lower bound on the independence number of graphs

We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e.g. [12]). We obtain our bound by using the Bhatia-Davis inequality applied with analytical results (minimum, maximum, expectation and variance) of an algorithm for the vertex cover problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Trends in Mathematical Science

سال: 2016

ISSN: 2147-5520

DOI: 10.20852/ntmsci.2016.112